作为一款成熟的复合式影像产品,Metus已成为多行业解决复杂疑难质量检测问题的有效工具,适合用于绝大部分材料和尺寸的检测任务,无缝对接半导体封装、电子制造、新能源汽车、智能穿戴设备产业、医疗器械等精密检测领域的需求。
AI技术自动化抓取工件表面尺寸特征,满足更高的质量检测标准
Metus AI自动寻找工件表面特征的应用,利用先进的机器学习技术,能够快速准确地识别和定位工件表面各种特征。通过高分辨率相机和图像处理技术,捕捉工件表面的微小细节,并利用AI算法进行分析和识别。
新能源汽车电池极片表面毛刺特征抓取
减少传统手动操作失败的重复工作,提高检测效率和准确性
Metus AI自动寻找工件表面特征的应用,适用于多种复杂边界的智能抓取场景,例如点、线、圆、弧等边缘要素的抓取,可替代人工手动操作,检测速度更快,同时减少人工抓边产生的差异性,提升复杂边界抓取的准确性与稳定性。AI检测单个检测要素的效率比人工检测单个检测要素的效率可提升至98.75%。
手动抓取表面特征圆(偏差大)、AI抓取表面特征圆(准确)
实现特征抓取的标准化处理,保证检测结果的一致性和可靠性
相比于传统的机器视觉工件表面特征抓取技术,AI自动寻找工件表面特征的精准度远超过人工机器视觉判断的准确度,可实现100%全自动检测并保证亚像素级的检测精度,缓减由于人工判断标准不一致而导致的检测效果差异性,有效保证检测结果的一致性和可靠性。
AI寻边亚像素级检测
结果可追溯
Metus在进行模型训练时,会记录每一个工件表面特征的检测结果,包括检测时间、检测位置、特征类型等信息并可将检测结果实时输出到数据输出表。用户可追溯AI抓边模型的标注、训练以及检测结果,从而保证检测的质量信息有记录、可查询、可跟踪,协助用户优化生产工艺和流程,提高生产效率和产品质量。
模型标注、训练和检测结果信息追溯
文章来源:海克斯康
图片来源:海克斯康
转载平台:微信公众号
责任编辑:朱晓裔
审 核 人:李峥
评论
加载更多